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1  |  INTRODUCTION

Event- related potentials (ERPs) are typically quite small 
relative to the background noise. For example, the face- 
sensitive N170 component might have an amplitude of 
4  μV but might be embedded in 40 μV of background 
EEG. Conventionally, researchers average multiple tri-
als together to isolate the ERP and “average out” the 
noise. The amplitude and/or latency of a given compo-
nent is then quantified or scored from the averaged ERP 
waveforms. Finally, these scores are entered into a 

statistical analysis to compare experimental conditions 
or groups of participants. Other approaches are also 
common in ERP research, but this averaging- followed- 
by- scoring sequence is the dominant approach in many 
subfields.1

 1 The conceptual framework described in this paper can easily be 
generalized to many other kinds of analyses that involve averaging and 
then scoring (such as when a time- frequency transform is applied prior 
to averaging and the data are scored as the mean power over some 
range of time points and frequencies).
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Abstract
Although it is widely accepted that data quality for event- related potential (ERP) 
components varies considerably across studies and across participants within a study, 
ERP data quality has not received much systematic analysis. The present study used 
a recently developed metric of ERP data quality—  the standardized measurement 
error (SME)— to examine how data quality varies across different ERP paradigms, 
across individual participants, and across different procedures for quantifying am-
plitude and latency values. The EEG recordings were taken from the ERP CORE, 
which includes data from 40 neurotypical college students for seven widely studied 
ERP components: P3b, N170, mismatch negativity, N400, error- related negativity, 
N2pc, and lateralized readiness potential. Large differences in data quality were 
observed across the different ERP components, and very large differences in data 
quality were observed across participants. Data quality also varied depending on 
the algorithm used to quantify the amplitude and especially the latency of a given 
ERP component. These results provide an initial set of benchmark values that can 
be used for comparison with previous and future ERP studies. They also provide 
useful information for predicting effect sizes and statistical power in future studies, 
even with different numbers of trials. More broadly, this study provides a general 
approach that could be used to determine which specific experimental designs, data 
collection procedures, and data processing algorithms lead to the best data quality.
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Because ERPs are so small relative to the background 
noise, the averaged ERP waveforms often contain consider-
able noise that adds uncontrolled variability to the observed 
amplitude and latency scores. This uncontrolled variability 
carries forward to increase the variance across participants, 
reducing effect sizes and the statistical power for detecting 
differences among conditions or groups. Although it is widely 
appreciated that noisy ERPs are problematic, and that aver-
aged ERP waveforms are much noisier in some paradigms 
and participants than in others, there is no widely used met-
ric of data quality in ERP research for quantifying this noise.2

1.1 | The standardized measurement 
error as a metric of ERP data quality

Recently, we proposed a metric of data quality for aver-
aged ERPs called the standardized measurement error or 
SME (Luck et al., 2021). The SME is a special case of the 
standard error of measurement, and it is designed to quan-
tify the precision of measurements (e.g., the amplitude or 
latency scores) that are obtained from averaged ERP 
waveforms. As detailed by Brandmaier et al.  (2018), a 
measure is precise to the extent that the same value is ob-
tained upon repeated measurements,3 assuming that the 
measurement process does not influence the system being 
measured. In theory, the precision of an ERP amplitude or 
latency score for a given participant could be quantified by 
repeating the experiment a large number of times with 
that participant, obtaining the score for each repetition of 
the experiment, and computing the standard deviation 
(SD) of these scores. However, this would be unrealisti-
cally time- consuming in practice, and the ERPs would 
likely change over repetitions of the experiment as a result 
of factors such as learning and boredom.

Fortunately, it is possible to estimate the precision of 
an ERP score using the data from a single recording ses-
sion. This is particularly straightforward when the score 
being obtained is the mean amplitude over some time 
range (e.g., the mean voltage from 350 to 550 ms for the 
P3b component, as illustrated in Figure 1). The mean am-
plitude score obtained from an averaged ERP waveform 

is identical to the average of the mean amplitude scores 
obtained from the single- trial EEG epochs, so the standard 
error of measurement for a mean amplitude score is sim-
ply the standard error of the mean or SEM of the score. 
A widely- used analytic solution is available for estimating 
the SEM:

In this equation, SD is the standard deviation of the 
single- trial mean amplitude scores and N is the number of 
trials being averaged together to create the averaged ERP 
waveform. This is illustrated in Figure  1, which shows 
single- trial EEG epochs and the corresponding averaged 
ERP waveform from a hypothetical oddball experiment in 
which the P3b component is scored as the mean voltage 
between 350 and 550 ms. The standard error of this score 
is estimated by measuring the mean voltage from 350 to 
550 ms in the single- trial EEG epochs, taking the SD of 
these values, and dividing by the square root of N. In other 
words, although the ultimate amplitude score is obtained 
from the averaged ERP waveform, the standard error of 
this score is obtained by applying Equation 1 to measure-
ments obtained from the single- trial EEG epochs. The re-
sulting standard error is an estimate the precision of the 
mean amplitude score that is obtained from the averaged 
ERP waveform (see Luck et al., 2021 for a more detailed 
explanation and justification).

When other scoring methods are used, the score ob-
tained from the averaged ERP waveform is not equal to 
the average of the single- trial scores, so Equation 1 cannot 
be used to estimate the standard error of measurement for 
these scores. For example, if you obtain the peak ampli-
tude from the single- trial epochs in Figure  1a and then 
average these values together, the result will not be equal 
to the peak amplitude measured from the averaged ERP 
waveform in Figure 1b. Thus, Equation 1 cannot be used 
to estimate the standard error of the peak amplitude score 
obtained from an averaged ERP waveform. However, 
bootstrapping can be used to estimate the standard error 
of measurement for the peak amplitude or for virtually 
any other amplitude or latency score that is obtained 
from averaged ERP waveforms. In this approach, the set 
of individual trials that were actually collected for a given 
participant are used to provide a population of trials for 
simulating repetitions of the experiment for that partic-
ipant. A single recording session is then simulated by 
randomly sampling from this set of trials. By simulating 
a large number of sessions, and measuring the amplitude 
or latency score of interest from each of these simulations, 
it is possible to quantify the variability of scores across 

 2 Some studies compute measures of psychometric reliability, but this 
approach has several shortcomings, such as an inability to quantify data 
quality for individual participants (see Luck et al., 2021). A new variant 
of this approach can be applied to single- participant data (Clayson  
et al., 2021), but it applies only to mean amplitude and depends on the 
amount of true score variance across the participants in a given sample.

 3 A measure can also be problematic if it is biased (i.e., produces a value 
that deviates consistently in a particular direction from the true value). 
Bias is a separate issue that will not be considered here but is discussed 
extensively in Luck (2014).

(1)SEM =

SD
√

N
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simulated sessions and obtain an estimate of the standard 
error of measurement (for more details, see section 2.4.2 
and Luck et al.,  2021). Another advantage of bootstrap-
ping is that it can be used when the score is obtained from 
a transformation of the averaged ERP waveforms, such as 
a difference wave.

Whereas Equation  1 involves dividing by the square 
root of the number of trials (

√

N), bootstrapping does 
not explicitly involve this division step. Nonetheless, be-
cause bootstrapping and Equation 1 are just two different 
ways of estimating the same value, standard errors vary 
with the number of trials in approximately the same way 
whether they are estimated using bootstrapping or using 
Equation 1.

When the standard error of measurement is used to 
quantify the precision of an ERP amplitude or latency 
score, we refer to it as the standardized measurement 
error (SME) of that score. It estimates how much variabil-
ity would be present in the mean amplitude scores from 
a given participant if the experiment were repeated an 
infinite number of times (assuming no learning, fatigue, 
etc.) and the amplitude or latency score was obtained 
from the averaged ERP waveform on each repetition. 
Specifically, the SME is an estimate of the SD of the scores 

we would get across these hypothetical repetitions. When 
Equation 1 is used to estimate the SME for mean ampli-
tude scores, we call this the analytic SME (aSME); when 
bootstrapping is used, we call this the bootstrapped SME 
(bSME).

As detailed by Luck et al. (2021), the SME can be used to 
determine how much of the variability across participants 
in amplitude or latency scores is a result of measurement 
error versus true differences among participants. This 
makes it possible to determine the extent to which the ef-
fect size for a comparison between groups or conditions 
is impacted by measurement error. It can also be used to 
predict exactly how effect sizes and statistical power will 
change if the measurement error is increased or decreased 
(e.g., by changing the number of trials per participant). 
The SME can be computed using the ERPLAB Toolbox 
software package (Lopez- Calderon & Luck, 2014), begin-
ning with Version 8.

1.2 | Defining “data quality”

The SME is intended to be a metric of data quality. Luck 
et al. (2021) argued that the concept of data quality in ERP 

F I G U R E  1  Example of how Equation 1 is used to estimate the standard error of measurement when the amplitude of the P3b wave 
is scored from an averaged ERP waveform as the mean voltage across a measurement window of 350– 550 ms. To compute this standard 
error, the mean amplitude score is obtained from the single- trial EEG epochs, and these single- trial scores are used to compute SD√

N
. SD is the 

standard deviation of the single- trial mean amplitude scores, and N is the number of trials. The result is the standard error of measurement 
for the score obtained from the averaged ERP. Separate standard error values can be obtained for each experimental condition (e.g., rare trials 
versus frequent trials in an oddball paradigm). This approach is possible because the mean amplitude score obtained from the averaged ERP 
waveform is equal to the average of the single- trial mean amplitude scores. This approach does not work with other scoring methods, such as 
peak amplitude and peak latency. Note that only a subset of the single- trial epochs used to create the averaged ERP waveform are shown here.

(a)
Single-Trial

EEG Epochs

(b)
Averaged

ERP
Waveform

The result is the standard 
error of the mean amplitude 
score obtained from the 
averaged ERP waveform

The mean voltage across the 
measurement window is obtained 

from the single-trial epochs to 
compute  SD / N

P3b

Average of the 
single-trial mean 
amplitude scores

=
Mean amplitude 

from the averaged 
ERP waveform
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research must be defined with respect to the specific scores 
that will be obtained from the averaged ERP waveforms. 
This is because the impact of a given source of noise will 
depend on how the amplitude or latency of a component 
is being scored. For example, high- frequency noise has a 
large effect on peak amplitude scores but relatively little 
effect on mean amplitude scores (because the upward and 
downward deflections produced by high- frequency noise 
largely cancel out when the voltages are averaged over a 
broad measurement window). Similarly, low- frequency 
drifts have a large impact on data quality for the ampli-
tude of late ERP components such as the P3b or N400 
(Kappenman & Luck, 2010; Tanner et al., 2015), but these 
drifts have less impact for earlier components (because 
the signal has not had much time to drift between the 
baseline period and the measurement period). Thus, there 
is no meaningful definition of ERP data quality that is in-
dependent of the scoring method.

When the SME is used to quantify data quality, any 
factors that produce uncontrolled variability in a given 
amplitude or latency score are considered to be noise with 
respect to that specific score. This definition of noise in-
cludes factors that might be of considerable theoretical or 
practical interest, such as oscillations that are none- phase- 
locked to stimulus onset (Busch et al., 2009; Mathewson 
et al., 2009) or trial- to- trial variations in attentional state 
(Adrian & Matthews, 1934; Boudewyn et al., 2017). Indeed, 
a great deal of evidence indicates that trial- to- trial vari-
ations in neurocognitive processes are important for un-
derstanding both typical and atypical cognitive processing 
(Ratcliff & McKoon, 2008; Tamm et al., 2012). However, 
these factors are considered noise from the perspective of 
the data quality for a given amplitude or latency score be-
cause they decrease the precision of the score and there-
fore decrease effect sizes and statistical power. In addition, 
because SME values combine sources of variability that 
are functionally important (e.g., variations in attentional 
state) and sources of variability that play no functional 
role (e.g., induced electrical noise), the SME is not appro-
priate for use as a measure of trial- to- trial variability in 
neurocognitive processing.

It is also important to note that the SME is directly in-
fluenced by the number of trials (N), and differences in 
N across studies, conditions, or participants will lead to 
differences in SME. This is appropriate because the SME is 
designed to quantify the precision of the amplitude or la-
tency scores that will be entered into the statistical analy-
sis, and differences in N will impact the precision of these 
scores and the resulting statistical power. However, it may 
sometimes be useful to compare data quality values in a 
manner that is not dependent on the number of trials and 
instead purely reflects trial- to- trial variability in the EEG. 
This is trivial to accomplish when Equation 1 is used to 

compute aSME values for mean amplitude scores because 
the SD of the single- trial scores can be used to estimate 
the trial- to- trial variability. We therefore provide these SD 
values along with SME values in the main analyses.

Unfortunately, this approach is not possible for boot-
strapped SME values, because bootstrapping does not 
directly provide a measure of the trial- to- trial variability. 
We are currently developing a solution for this (Zhang & 
Luck, in preparation).

1.3 | Potential uses of the SME

The SME has many potential uses. Within a given study, 
the SME could be used to determine which participants 
are so noisy that they should be excluded, which chan-
nels are so noisy that they should be interpolated, and 
how changing a given processing parameter (e.g., the arti-
fact rejection threshold) will increase or decrease the data 
quality. When new laboratories are built or new person-
nel are trained, the SME makes it possible to determine 
whether the resulting data quality meets an objective 
standard. In methodology research, the SME could be 
used to determine which recording and analysis proce-
dures lead to the highest data quality. If published papers 
regularly reported SME values, it would be possible to 
quantitatively assess how data quality varies among dif-
ferent experimental paradigms, subject populations, and 
processing pipelines.

For many of these uses, it would be valuable to have a 
broad set of benchmark SME values against which new 
data could be compared. That is, it would be useful to have 
a reference point that can be used to make an informed 
guess about the range of SME values that should be ex-
pected in a given study. The primary goal of the present 
paper was therefore to provide an initial set of benchmark 
values. Specifically, we computed SME values for four dif-
ferent scoring procedures (peak amplitude, mean ampli-
tude, peak latency, and 50% area latency) obtained from 
each of 40 participants for each of the seven ERP compo-
nents contained in the ERP CORE (Compendium of Open 
Resources and Experiments; Kappenman et al., 2021). The 
ERP CORE is a set of stimulus presentation scripts, data 
analysis scripts, and EEG recordings for six standard ERP 
paradigms that yield seven commonly studied ERP com-
ponents. Each task requires approximately 10 minutes to 
run, and the resource contains data from 40 neurotypical 
college students who completed all six tasks in a single 
session.

Because the ERP CORE contains data from a broad 
range of paradigms and a reasonably large set of partic-
ipants, it provided an excellent resource for developing 
an initial set of benchmark SME values. Well- controlled 
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comparisons across ERP components were possible be-
cause the same participants completed all six paradigms, 
and a broad variety of experimental details were held con-
stant across paradigms (e.g., lighting, viewing distance). 
Moreover, this resource made it possible to determine the 
extent to which data quality is correlated across compo-
nents and scoring methods (e.g., whether an individual 
with poor data quality for one component or scoring 
method also has poor data quality for other components 
or scoring methods).

Of course, data quality is likely to differ between the 
neurotypical college students who were tested for the 
ERP CORE and other populations (e.g., children, adults 
with neurological or psychiatric disorders). Thus, the 
SME values from the ERP CORE data provide a direct 
benchmark only for populations that are similar to the 
participants that are included in the ERP CORE. For 
other populations, the ERP CORE data are not a bench-
mark per se, but they are still useful for providing a point 
of comparison until benchmark values can be obtained 
for those populations.

1.4 | Organization of the present paper

The SME analyses in the present paper are divided 
into three sections. The first section provides a detailed 
description of the SME values obtained from the ERP 
CORE data across paradigms, across participants, and 
across scoring procedures. These values are presented 
in multiple different formats to make it easy to compare 
them with SME values obtained in future studies. The 
second section asks why the SME values varied across 
the paradigms and participants, focusing on the num-
ber of trials being averaged together and trial- to- trial 
variability in the EEG. The final section of the present 
paper quantifies the extent to which SME values for a 
given individual are correlated across paradigms and 
across scoring procedures. In other words, this section 
asks whether a given individual has generally “good” or 
“bad” data quality across paradigms and scoring proce-
dures. Together, these analyses provide a useful start-
ing point for researchers who wish to examine the data 
quality in their own paradigms, participants, and scor-
ing procedures.

2  |  METHOD

This study used existing, publicly available data in 
Kappenman et al. (2021). All the scripts and results for the 
present analyses have been added to a folder named SME 
in the online repository for the ERP CORE (10.18115/

D5JW4R). This includes spreadsheets with all the single- 
subject SME values. The participants, experimental par-
adigms, recording methods, and analysis methods are 
described in detail in Kappenman et al. (2021). Here, we 
provide a brief overview.

2.1 | Participants

Data were obtained from 40 neurotypical college stu-
dents (25 female) from University of California, Davis 
community. Although some participants failed to meet 
the inclusion criteria for some of the components in the 
original ERP CORE analysis (e.g., owing to poor behav-
ioral performance), we provide SME data from all 40 
participants here to represent the entire range of data 
quality across participants. The one exception was that 
Subject 7 was excluded from the N2pc analyses because 
the number of trials for one condition was zero, making 
it impossible to compute SME values for this participant 
in this paradigm.

2.2 | Overview of the six paradigms and 
seven ERP components

Figure 2 provides an overview of the six paradigms, and 
Figure 3 shows the grand average parent waves (left panel) 
and difference waves (right panel) for the seven ERP com-
ponents. These grand average waveforms are identical 
to those shown in Figure 2 of Kappenman et al.  (2021), 
except that the waveforms here include all participants 
rather than excluding individuals with excessive artifacts 
or behavioral errors.

The P3b paradigm is shown in Figure  2a. In each 
block of this visual oddball task, five letters (A, B, C, D, 
and E) appeared in random order (p = .2 for each letter). 
One letter was designed to be target for a given block and 
the other four letters were non- targets (e.g., “A” was the 
target in one block and a nontarget in the other blocks). 
Participants were instructed to press one button if a given 
letter was the target and a different button if it was one of 
the four nontargets.

The N170 paradigm is shown in Figure 2b. Each trial 
consisted of a face, a car, a scrambled face, or a scrambled 
car (p = .25 for each category). For each stimulus, partic-
ipants pressed one of two buttons to indicate whether the 
stimulus was an “intact object” (regardless of whether it 
was a face or car) or a “texture” (scrambled face or scram-
bled car). For the sake of simplicity, we examined only the 
face and car trials.

The mismatch negativity (MMN) paradigm is shown 
in Figure 2c. In this passive auditory oddball paradigm, a 

http://10.0.70.195/D5JW4R
http://10.0.70.195/D5JW4R
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task- irrelevant sequence of standard tones (80 dB, p = .8) 
and deviant tones (70 dB, p = .2) was presented to partic-
ipants while they watched a silent video. No responses 
were made to the tones.

The N400 paradigm is shown in Figure  2d. In this 
word pair judgment task, each trial consisted of a red 
prime word followed by a green target word. On each 
trial, participants were required to press one of two 

buttons to indicate whether the target word was related 
(p  =  .5) or unrelated (p  =  .5) to the preceding prime 
word.

The paradigm used to examine the lateralized readiness 
potential (LRP) and the error- related negativity (ERN) is 
shown in Figure 2e. In this variant of the Eriksen flanker 
paradigm (Eriksen & Eriksen, 1974), each stimulus con-
tained a central arrow surrounded by flanking arrows that 
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(b) N170: Is the stimulus intact or scrambled?

…

90
0-

11
00

m
s

14
00

-1
60

0
m

s

90
0-

11
00

m
s

14
00

-1
60

0
m

s

200 ms 200 ms 200 ms 200 ms

(d) N400: Is the green word related or unrelated to the preceding red word?
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(a) P3b: Is the letter a target (e.g., C) or nontarget (e.g., A, B, D, E)?
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pointed in the same direction or the opposite direction as 
the central arrow. One each trial, participants pressed one 
of two buttons to indicate whether the central arrow was 
pointing leftward (p = .5) or rightward (p = .5).

The N2pc paradigm is shown in Figure 2f. In this sim-
ple visual search task, either pink or blue was designated 
as the target color for a given block of trials. Each stimulus 
within a block contained a pink square, and blue square, 
and 22 black squares. For each stimulus, participants 
pressed one of two buttons to indicate the location (top or 
bottom) of a gap in the attended- color square.

2.3 | Overview of data collection and 
data processing pipeline

Continuous EEG data were collected using a Biosemi 
ActiveTwo recoding system with active electrodes 
(Biosemi B.V.) an antialiasing filter (fifth- order sinc filter 
with a half- power cutoff at 204.8 Hz) and a sampling rate 
of 1024 Hz. Data were analyzed from 30 scalp sites along 
with horizontal and vertical electrooculogram electrodes.

The present analyses were performed on the data 
provided as part of the ERP CORE resource (10.18115/
D5JW4R). Our goal was to examine data quality in the 
context of the kind of preprocessing that would typically 
be performed in an ERP study (e.g., filtering, referenc-
ing, artifact rejection and correction), so we used the data 
files that were already preprocessed (see Luck,  2022 for 
examples of how preprocessing influences the SME). The 
original preprocessing and our additional analyses were 
conducted in MATLAB 2020a using EEGLAB 2021.1 
(Delorme & Makeig,  2004) and ERPLAB 8.30 (Lopez- 
Calderon & Luck,  2014). All scripts are available in the 
ERP CORE resource.

The preprocessing steps are described in detail in 
Kappenman et al.  (2021), and here we provide a brief 
summary. The event codes were shifted to reflect the 

intrinsic delay of the video monitor, and the data were res-
ampled at 256 Hz. The data were referenced to the average 
of the P9 and P10 electrodes (close to the left and right 
mastoids) for all components except the N170, for which 
the average of all scalp sites was used as the reference. A 
noncausal Butterworth high- pass filter (half- amplitude 
cutoff 0.1 Hz, 12 dB/oct roll- off) was applied. Independent 
component analysis (ICA) was used to correct the data for 
eyeblinks and eye movements.

The resulting EEG data were epoched and then 
baseline- corrected using the time windows shown in 
Table 1. Bad channels were interpolated using ERPLAB's 
spherical interpolation algorithm. Trials with blinks or 
eye movements that could have impacted perception of 
the stimuli were rejected, as were trials with large EEG 
deflections in any channel and trials with incorrect be-
havioral responses. The remaining epochs were averaged 
across trials for each experimental condition.

Table  2 shows the mean number of epochs remain-
ing for averaging in each condition for each ERP compo-
nent, and the ERP CORE repository (10.18115/D5JW4R) 
includes spreadsheets with the number of included and 
excluded trials for each participant. Table 2 also includes 
the mean and peak amplitudes for each ERP component.

2.4 | Quantification of data quality

2.4.1 | Measurement windows and 
electrode sites

The original ERP CORE paper (Kappenman et al., 2021) 
identified an optimal electrode site and an optimal time 
window for scoring each ERP component, which are 
shown in Table  1. We used these sites and windows 
for obtaining the amplitude and latency scores and 
for quantifying the SME and trial- to- trial variability of 
these scores.

F I G U R E  2  Examples of multiple trials for each of the six paradigms. (a) Active visual oddball paradigm used to elicit the P3b 
component. The letters A, B, C, D, and E were presented in random order (p = .2 for each letter). In each block, one letter was designated 
the target, and the other four letters were nontargets. Participants were required to classify each stimulus as target (20% of stimuli) or 
nontarget (80% of stimuli). (b) Face perception paradigm used to elicit the N170 component. On each trial, a stimulus from one of four 
equiprobable categories was displayed (face, scrambled face, car, and scrambled car), and participants were required to classify the image 
as an intact object (face or car) or a texture (scrambled face or scrambled car). The present paper focuses only on the face and car trials. 
(c) Passive auditory oddball task used to elicit the mismatch negativity (MMN). On each trial, either a standard tone (80 dB, p = .8) or a 
deviant tone (70 dB, p = .2) was presented. The tones were task- irrelevant; participants watched a silent video during this paradigm. (d) 
Word pair judgment paradigm used to elicit the N400 component. On each trial, a red prime word was followed by a green target word, 
and participants indicated whether the green word was related (p = .5) or unrelated (p = .5) to the preceding red prime word. (e) Flankers 
task used to elicit the lateralized readiness potential (LRP) and the error- related negativity (ERN). Participants were required to indicate 
whether the central arrow pointed leftward or rightward, ignoring the flanking arrows. (f) Simple visual search task used to elicit the N2pc 
component. One color (pink or blue) was designated the target color at the beginning of each trial block. On each trial, participants indicated 
whether the gap was on the top or the bottom of the attended- color square.

http://10.0.70.195/D5JW4R
http://10.0.70.195/D5JW4R
http://10.0.70.195/D5JW4R
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F I G U R E  3  Grand average parent waves (left panel) and difference waves (right panel) for the seven ERP components examined in the 
ERP CORE. The shaded area accompanying the difference waves is the standard error of the mean across participants at each time point. 
This is largely identical to Figure 2 in Kappenman et al. (2021), except that all 40 participants were included here (except that Subject 7 was 
excluded from the N2pc waveforms because the number of trials for one condition was zero after artifact rejection). The original figure was 
released under a CC BY license (http://creat iveco mmons.org/licen ses/by/4.0/).
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2.4.2 | SME quantification

We focused on four scoring algorithms, as implemented 
by ERPLAB Toolbox (Lopez- Calderon & Luck,  2014). 
Mean amplitude was scored as the mean voltage across 
time points within the measurement window for a given 
component. Peak amplitude was scored as the voltage of 
the most positive point (for P3b) or most negative point 
(for the other components) within the measurement 
window. Peak latency was scored as the latency of peak 
amplitude point.4 The 50% area latency was scored by 
measuring the area of the region above the zero line (for 
P3b) or below the zero line (for the other components) 
within the measurement window, and then finding the 
time point that bisected this area into two equal- area re-
gions. To increase precision, the waveforms were up-
sampled by a factor of 10 using spline interpolation 
before the latencies were scored (see Luck, 2014 for the 
rationale).

According to Equation1, aSME for mean amplitude 
can be estimated by measuring the mean amplitude on 
single trials and dividing the standard deviation of the 
single- trial amplitudes by the square root of the number 
of trials. However, this approach is not valid for peak am-
plitude, peak latency and 50% area latency, and it cannot 
be directly applied to difference waves. We therefore com-
puted the bSME, even for mean amplitude scores. Note 
that aSME and bSME values are virtually identical for 
mean amplitude scores as long as the number of trials is 
reasonably large (more than eight).

These bSME values were obtained for each of the 
parent waves used to define a given component (e.g., the 
rare and frequent trials in the P3b paradigm) and also for 
the corresponding difference wave (e.g., the rare- minus- 
frequent difference wave in the P3b paradigm). As will 
be described in Section 3.2, the latency scores could not 
be validly obtained from the parent waveforms in many 
cases, so latencies were obtained only from the difference 
waves.

Bootstrapping is a common approach in many areas 
of statistics (Boos,  2003; Efron & Tibshirani,  1994). As 
described by Luck et al.  (2021), we implemented boot-
strapping by simulating 1000 repetitions of each experi-
ment for each participant. In each simulated repetition of 
a given experiment, we selected N trials at random, with 
replacement, from all N trials that were used to create the 
standard averaged ERP waveforms for a given condition 

 4 For both peak amplitude and peak latency, the local peak approach 
(Luck, 2014) was used, in which a peak is defined as the most extreme 
amplitude that is also more extreme than the average of the amplitudes 
at the surrounding time points. This avoids detecting a false peak when 
the voltage trends upward or downward at the edges of the 
measurement window, leading to a voltage that is more extreme than 
any other voltage in the window without being a peak in the waveform 
as a whole.

T A B L E  1  Epoch window, baseline period, electrode site, and time window used for each ERP component.

P3b N170 MMN N400 ERN N2pc LRP

Epoch window (ms) −200 to 800 −200 to 800 −200 to 800 −200 to 800 −600 to 400 −200 to 800 −800 to 200

Baseline period (ms) −200 to 0 −200 to 0 −200 to 0 −200 to 0 −400 to −200 −200 to 0 −800 to −600

Channel Pz PO8 FCz CPz FCz PO7/PO8 C3/C4

Time window (ms) 300 to 600 110 to 150 125 to 225 300 to 500 0 to 100 200 to 275 −100 to 0

T A B L E  2  Mean number of trials (±SEM) and mean of mean/peak amplitude (±SEM) across all 40 participants for each condition for 
the seven ERP components, after excluding trials with artifacts and behavioral errors.

Condition

P3b N170 MMN N400

Rare Frequent Faces Cars Deviants Standards Unrelated Related

#Trials 30.53 ± 1.36 139.90 ± 3.29 69.00 ± 2.04 68.13 ± 1.44 183.18 ± 3.39 534.95 ± 9.51 52.60 ± 1.08 51.20 ± 1.18

Mean amplitude 11.39 ± 0.79 4.34 ± 0.46 0.54 ± 0.85 4.16 ± 0.79 0.13 ± 0.23 1.99 ± 0.19 1.01 ± 0.61 8.72 ± 0.83

Peak amplitude 17.44 ± 1.03 8.62 ± 0.58 −2.98 ± 0.88 0.94 ± 0.94 −2.5 ± 0.29 0.56 ± 0.34 −2.89 ± 0.63 4.88 ± 0.85

ERN N2pc LRP – – 

Condition Incorrect Correct Left target Right target Left response Right response – – 

#Trials 40.05 ± 3.42 337.03 ± 7.39 118.73 ± 4.33 118.23 ± 4.61 166.75 ± 3.94 167.13 ± 3.78 – – 

Mean amplitude −2.97 ± 1.00 6.27 ± 0.84 3.62 ± 0.52 4.79 ± 0.53 3.27 ± 0.65 5.75 ± 0.64 – – 

Peak amplitude −9.17 ± 1.20 3.87 ± 0.92 2.62 ± 0.60 3.42 ± 0.56 0.49 ± 0.65 3.04 ± 0.74 – – 
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in that participant. Remarkably, sampling with replace-
ment from the existing set of N trials accurately simulates 
conducting a replication experiment with N new trials as 
long as N is reasonably large (e.g., >8; Chernick, 2011). We 
then averaged that set of N trials together and obtained 
the mean and peak amplitude scores from the averaged 
ERP waveform. The SME was calculated as the SD across 
the 1000 simulated repetitions for that condition in that 
participant.

For each repetition, we also created a difference wave 
for the two conditions of a given experiment. We then ob-
tained the mean amplitude, peak amplitude, peak latency, 
and 50% area latency scores from this difference wave. The 
SME for a given difference- wave score was then computed 
as the SD of the scores from the 1000 simulated repetitions 
of the experiment.

One limitation of this bootstrapping procedure is 
that, because it involves sampling randomly from the 
available trials, the SME value varies slightly each time 
the procedure is repeated. To make the results exactly 
reproducible (e.g., if another lab wishes to reproduce the 
results), a random number generator seed can be gener-
ated for each iteration and then used across repetitions 
of the procedure.

2.4.3 | Quantification of trial- to- trial 
variability

For mean amplitude scores, Equation  1 indicates that 
trial- to- trial variability— quantified as the SD of the 
single- trial mean amplitudes— is a key factor in determin-
ing measurement error. We therefore computed the SD 
of the single- trial mean amplitudes for the parent waves 
in each experimental condition for each ERP component 
for each participant. This was straightforward for the P3b, 
N170, MMN, N400, and ERN components, but it was 
slightly more complicated for the N2pc and LRP because 
the parent waves were defined as contralateral (the left 
hemisphere signal for trials with a right- side stimulus or 
response averaged with the right hemisphere signal for 
trials with a left- side stimulus or response) or ipsilateral 
(the left hemisphere signal for trials with a left- side stimu-
lus or response averaged with the right hemisphere signal 
for trials with a right- side stimulus or response). To obtain 
the SD for the contralateral and ipsilateral parent wave-
form, we took advantage of the fact that the variance of 
a sum of two random variables is equal to the sum of the 
two variances. Specifically, we computed the variance for 
each of the two waveforms that were combined (e.g., the 
variance of the left hemisphere mean amplitudes for tri-
als with a left- side stimulus or response and the variance 
of the right hemisphere mean amplitudes for trials with a 

right- side stimulus or response), took the average of these 
two variances, and then took the square root to yield an 
SD value.

We also computed SD values for the single- trial peak 
amplitude scores. Single- trial latency scores could not be 
validly computed for several components, so we did not 
examine trial- to- trial variability in latency. That issue 
will be addressed via simulations in a subsequent paper 
(Zhang & Luck, in preparation).

2.5 | Statistical analyses

We used F and t tests to compare SME and SD values across 
scoring methods and experimental paradigms. We used 
Spearman rho rank- order correlation coefficients to exam-
ine how SME or SD values covaried across participants for 
different scoring methods or experimental paradigms. Slope 
values, however, were obtained from standard linear regres-
sions. For each set of statistical analyses, we performed a fam-
ilywise correction for multiple comparisons using the false 
discovery rate correction (Benjamini & Hochberg, 1995). An 
alpha of .05 was used in all statistical tests.

3  |  RESULTS

3.1 | Basic characterization of data 
quality across paradigms, participants, and 
scoring procedures

We begin by providing basic information about how SME 
values varied across the seven ERP components, the two 
main conditions used to isolate each component, the four 
different amplitude and latency scoring procedures, and 
the 40 different participants. A large number of SME val-
ues are presented. To keep things manageable, the key 
values are summarized in the tables and figures of the 
main manuscript, and additional values are provided in 
supplementary tables and figures. In addition, spread-
sheets containing the single- participant values are avail-
able online at 10.18115/D5JW4R, along with all the codes 
used to compute the SME values.

3.1.1 | Variations in data quality across 
paradigms, conditions, and scoring procedures 
(parent waves)

Figure 4a shows the SME for the mean amplitude scores, 
averaged across participants, for each of the parent waves 
used to define the seven components. Figure 4b shows the 
corresponding SME values for the peak amplitude scores. 

http://10.0.70.195/D5JW4R
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The exact values are presented in Table S1. The root mean 
square (RMS) of the SME values across participants is 
sometimes more useful than mean SME across partici-
pants,5 and the RMS values are provided in Figure S1 and 

Table S2. Figure 4c– f show the variability (SD) across tri-
als and the square root of these number of trials; these will 
be discussed in Section 3.2. Note that it is difficult to ob-
tain valid latency measures from parent waveforms in 
many cases. For example, there is no negative- going volt-
age deflection on semantically related trials in the N400 
paradigm (see Figure 3), so N400 latency cannot be validly 
measured for this experimental condition. Thus, this sub-
section focuses on the SME for the amplitude scores ob-
tained from parent waveforms.

The first thing to note in Figure 4 is that the mean SME 
values were worse (higher) for the peak amplitude scores 

 5 The RMS value is more useful than the mean across participants when 
the goal is to determine how the statistical power of a given experiment 
is influenced by the data quality. Specifically, high SME values have an 
outsized effect on statistical power, and this is captured by the RMS of 
the SME values. However, the goal of the present study is to provide a 
point of comparison with other studies, and for that purpose the mean 
is more convenient. We also provide histograms showing the entire 
distribution of SME scores.

F I G U R E  4  Mean across participants of the standardized measurement error (SME; panels a and b), the standard deviation across 
trials (SD; panels c and d), and the square root of the number of trials (panels e and f). Separate values are provided for the SME values 
corresponding to mean amplitude scores (left column) and peak amplitude scores (right column). The mean and peak amplitude scores and 
corresponding SME and SD values were computed using the time windows and electrode sites shown in Table 1. Note that the number of 
trials varied across individuals because of artifact rejection and exclusion of trials with errors. However, panels e and f are identical because 
the same trials were used for the averages used for scoring mean amplitude and peak amplitude. Error bars show the standard error of the 
mean of the single- participant values.

M
ea

n 
of

 S
D 

of
 si

ng
le

-tr
ia

l a
m

pl
itu

de
s

P3b N170 MMN N400 ERN N2pc LRP

Parent wave: Mean amplitude scores
(c)

0

1

2

3 Parent wave: Mean amplitude scores

P3b N170 MMN N400 ERN N2pc LRP

Ra
re

Fr
eq

ue
nt

Fa
ce

s
Ca

rs

Re
la

te
d

Un
re

la
te

d

(a)

St
an

da
rd

s
De

vi
an

ts

Co
rr

ec
t

Co
nt

ra
la

te
ra

l
Ip

sil
at

er
al

Co
nt

ra
la

te
ra

l
Ip

sil
at

er
al

M
ea

n 
 o

f i
nd

iv
id

ua
l S

M
E 

va
lu

es

5

10

15

20

25

M
ea

n 
of

 th
e 

sq
ua

re
 ro

ot
 o

f t
ria

ls

P3b N170 MMN N400 ERN N2pc LRP

(e)

Ra
re

Fr
eq

ue
nt

Fa
ce

s
Ca

rs St
an

da
rd

s
De

vi
an

ts

Re
la

te
d

Un
re

la
te

d

Co
rr

ec
t

In
co

rr
ec

t Co
nt

ra
la

te
ra

l
Ip

sil
at

er
al

Co
nt

ra
la

te
ra

l
Ip

sil
at

er
al

4

6

8

10

12

14

Ra
re

Fr
eq

ue
nt

Fa
ce

s
Ca

rs St
an

da
rd

s
De

vi
an

ts

Re
la

te
d

Un
re

la
te

d

Co
rr

ec
t

In
co

rr
ec

t Co
nt

ra
la

te
ra

l
Ip

sil
at

er
al

Co
nt

ra
la

te
ra

l
Ip

sil
at

er
al

Parent wave: Mean amplitude scores

µV

µV

P3b N170 MMN N400 ERN N2pc LRP

Parent wave: Peak amplitude scores
(d)

Parent wave: Peak amplitude scores

P3b N170 MMN N400 ERN N2pc LRP
0

1

2

3

Fr
eq

ue
nt

Fa
ce

s
Ca

rs

(b)

St
an

da
rd

s
De

vi
an

ts

Re
la

te
d

Un
re

la
te

d

Co
rr

ec
t

Co
nt

ra
la

te
ra

l

Co
nt

ra
la

te
ra

l

Ip
sil

at
er

al

Ip
sil

at
er

al

M
ea

n 
of

 S
D 

of
 si

ng
le

-tr
ia

l a
m

pl
itu

de
s

M
ea

n 
 o

f i
nd

iv
id

ua
l S

M
E 

va
lu

es
4

6

8

10

12

14

Co
rr

ec
t

In
co

rr
ec

t

Re
la

te
d

Un
re

la
te

d

St
an

da
rd

s
De

vi
an

ts

Fa
ce

s
Ca

rsRa
re

Fr
eq

ue
nt

Ip
sil

at
er

al
Co

nt
ra

la
te

ra
l

5

10

15

20

25

M
ea

n 
of

 th
e 

sq
ua

re
 ro

ot
 o

f t
ria

ls

P3b N170 MMN N400 ERN N2pc LRP

(f)
Ra

re
Fr

eq
ue

nt

Fa
ce

s
Ca

rs St
an

da
rd

s
De

vi
an

ts

Re
la

te
d

Un
re

la
te

d

Co
rr

ec
t

In
co

rr
ec

t Co
nt

ra
la

te
ra

l
Ip

sil
at

er
al

Co
nt

ra
la

te
ra

l
Ip

sil
at

er
al

Parent wave: Peak amplitude scores

µV

µV

Ra
re In
co

rr
ec

t

In
co

rr
ec

t

Co
nt

ra
la

te
ra

l
Ip

sil
at

er
al



12 of 26 |   ZHANG and LUCK

than for the mean amplitude scores in every case. To test 
this statistically, we used paired t tests to compare the 
SME values for mean amplitude and peak amplitude, sep-
arately for each combination of experimental paradigm 
and condition (correcting for multiple comparisons). In 
all 14 cases, the SME was significantly worse (higher) for 
peak amplitude than mean amplitude (see Table S3). This 
finding is consistent with the claim that peak amplitude 
is more sensitive to noise than mean amplitude (Clayson 
et al., 2013; Luck, 2014).

The next thing to note is that the SME values var-
ied considerably across the seven ERP components, 
with some components having much worse (higher) 
SME values than other components. For example, the 
SME for mean amplitude (measured from the difference 
waves) was approximately four times greater for P3b and 
N400 than for N2pc. The variations in SME across com-
ponents were even more extreme for the peak amplitude 
scores. In addition, the SME values varied considerably 
between the two conditions used to define some of the 
components (e.g., much higher for the rare category 
than for the frequent category in the P3b paradigm). 
The reasons for these differences will be examined in 
Sections 3.2 and 3.3.

To analyze these differences statistically, we used 
paired t tests to compare each pair of conditions (correct-
ing for multiple comparisons). As shown in Table 3, con-
ditions with fewer trials yielded significantly higher SME 
values than conditions with more trials (i.e., for the P3b, 
MMN, and ERN scores). In addition, the SME in the N400 
paradigm was significantly greater for the semantically 
related condition than for the semantically unrelated con-
dition. A possible explanation for this difference will be 
described in Section 4.2.

Because there were two conditions in each paradigm, 
there was no straightforward way to statistically compare 
SME values across paradigms in a condition- independent 
manner for the SME values shown in Figure 4. However, 
the next section provides a comparison across paradigms 
for amplitude and latency scores obtained from difference 
waves.

3.1.2 | Variations in data quality across 
paradigms and scoring procedures for 
experimental effects (difference waves)

In many cases, it is useful to score the amplitude or latency 
of a component from a difference wave (Luck, 2014). The 
SME for such scores can be obtained using bootstrapping 
(Luck et al.,  2021). For mean amplitude scores, the re-
sulting SME quantifies the measurement error of the ex-
perimental effect. Difference waves are also necessary for T
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obtaining valid latency scores for some components (e.g., 
N2pc and LRP). Thus, this subsection focuses on scores 
obtained from difference waves, which made it possible to 
characterize the SME for both amplitude measures (mean 
amplitude and peak amplitude) and latency measures 
(peak latency and 50% area latency).

Figure  5 shows the resulting SME values, averaged 
across participants, for each combination of scoring 
method and ERP component. Exact values are provided 
in supplemental Table S1, and RMS values are provided in 
supplemental Figure S1 and Table S2.

As was observed for the parent waves, the SME val-
ues for the difference waves were worse (larger) for peak 
amplitude than for mean amplitude. More precisely, the 
SME values were 1.20 times as large (i.e., 20% larger) for 
peak amplitude than for mean amplitude when averaged 
across the seven ERP components. Similarly, the SME val-
ues were worse for the peak latency measure than for the 
50% area latency measure. Indeed, averaged across com-
ponents, the SME values were 2.68 times larger for peak 
latency than for 50% area latency. This finding is consis-
tent with the claim that 50% area latency is substantially 
more robust against noise than is peak latency (Clayson 
et al., 2013; Luck, 2014). In addition, the SME values var-
ied widely across the seven ERP components, approxi-
mately paralleling the differences in SME values observed 
for the parent waveforms (Figure 4a,b).

To provide statistical support for these observations, 
we conducted two repeated- measures analyses of variance 
(anovas) on the SME values, one for the amplitude values 
and one for the latency values. Each anova had two fac-
tors: scoring method and ERP component. For amplitude 
scores, the SME values were significantly worse (higher) 
for the peak amplitude method than for the mean am-
plitude method, F(1, 38)  =  247.67, p < .001. For latency 
scores, the SME values were significantly worse (higher) 
for the peak latency method than for the 50% area latency 

method, F(1, 38)  =  293.38, p < .001. For both amplitude 
and latency scores, SME values varied significantly across 
ERP components (amplitude: F(6, 33)  =  69.49, p < .001; 
 latency: F(6, 33) = 84.41, p < .001). The interaction  between 
scoring method and ERP component was also significant 
for both amplitude scores (F(6, 33) = 28.98, p < .001) and 
latency scores (F(6, 33) = 43.69, p < .001).

3.1.3 | Variations in data quality across 
participants for each component and 
scoring procedure

Unlike psychometric reliability metrics, which typically 
provide a single value for a group of participants and 
are strongly influenced by the range of values across the 
group, a group- independent SME value is obtained for 
each individual participant (see also Clayson et al., 2021). 
Figure 6 shows the single- participant SME values for each 
component (assessed from the difference waves) for four 
scoring methods, and the range of SME values across par-
ticipants are summarized as histograms in Figure 7. Exact 
values are provided in the online repository for this paper 
(10.18115/D5JW4R). Figures 6 and 7 make it clear that the 
SME values varied greatly across individual participants, 
with SME values being 3– 5 times greater for some partici-
pants than for others. Section 3.3.1 will examine whether 
these individual differences in SME are consistent across 
the different ERP components.

Analogous single- participant plots and histograms are 
provided for the parent waveforms in Figures S2 and S3. 
The SME values for the parent waveforms also differed 
substantially across participants.

The SME values shown in Figures  4– 7 and the asso-
ciated supplementary materials provide an initial bench-
mark against which data quality from other data sets 
can be compared. That is, these values can be used as a 

F I G U R E  5  Standardized measurement error (SME) values, averaged across participants, for scores obtained from the difference waves 
used to isolate each of the seven ERP components. SME values are shown for the mean amplitude and peak amplitude scores (a) and for the 
peak latency score and 50% area latency score (b). Values were obtained using the time windows and electrode sites shown in Table 1. Error 
bars show the standard error of the mean across participants.
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comparison point to determine whether other recording 
environments or other variations on these paradigms lead 
to better or worse data quality. They also provide an initial 
benchmark for the variability in data quality across par-
ticipants. To our knowledge, this is the first such set of 
data quality benchmark values across multiple ERP com-
ponents and a reasonably large sample of participants. As 
noted in Section 1.3, however, these results may not gen-
eralize to other populations.

3.2 | Variations in the number of 
trials and trial- to- trial EEG variability

Now that we have established that data quality varies sub-
stantially across paradigms, conditions, and participants, 

this section will examine two of the factors that are re-
sponsible for these differences, namely trial- to- trial EEG 
variability (quantified as the SD of the single- trial ampli-
tudes) and the square root of the number of trials. For 
mean amplitude, Equation 1 states that the standard error 
of measurement for the mean amplitude score (which 
is the SME for mean amplitude) can be calculated for a 
given participant by simply dividing the SD by the square 
root of the number of trials. However, the extent to which 
the SD varies across paradigms, experimental conditions, 
and participants is an empirical question. In addition, the 
number of trials that remain after artifact rejection and 
the exclusion of trials with incorrect behavioral responses 
may vary across individuals. Thus, empirical data are 
needed to determine the extent to which SME values are 
actually influenced by the SD and the number of trials.

F I G U R E  6  Single- participant SME values for four different scoring methods (mean amplitude, peak amplitude, peak latency, and 50% 
area latency), measured from difference waves for each of the seven ERP components. Each bar represents the SME value for one of the 40 
participants.
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Figure 4 displays the mean across participants of the 
SME, the SD, and the square root of the number of trials 
for the parent waves corresponding to each of the seven 
ERP components. These values are shown for the mean 
amplitude scores on the left and for peak amplitude scores 
on the right. Equation 1 does not apply for peak amplitude 
because the peak amplitude of an averaged ERP waveform 
is not equal to the average of the single- trial peak ampli-
tudes, so empirical data are needed to determine how the 
SME for peak amplitude varies with the SD and the num-
ber of trials.

We focus on mean and peak amplitude scores in the fol-
lowing analyses because it is impossible to obtain mean-
ingful single- trial latency scores and thereby estimate 
trial- to- trial variability for many of the components (e.g., 
the N2pc and LRP components, where the component 
is defined by a contralateral- minus- ipsilateral difference 
wave). In addition, we focus on the parent waves rather 
than the difference waves, because the number of trials 
varied across conditions for some of the components (e.g., 
the rare and frequent conditions in the P3b paradigm), 

and it is not clear how the number of trials for each con-
dition should be combined when considering the SME for 
the difference between the conditions.

3.2.1 | The role of the 
number of trials in data quality for specific 
paradigms and conditions

We begin by considering the role of the number of trials 
per condition. As shown in Figure 4, when two conditions 
of a given paradigm differed in the number of trials, the 
SME for both mean amplitude and peak amplitude was 
worse (higher) in the condition with fewer trials. These 
differences were approximately linear with respect to the 
square root of the number of trials. For example, in the 
P3b and MMN paradigms, there were four times as many 
trials in the frequent category as in the rare category, and 
therefore the square root of the number of trials was twice 
as great in the frequent category as in the rare category. 
Correspondingly, the SME was approximately twice as 

F I G U R E  7  Histograms of single- participant standardized measurement error (SME) values for mean amplitude, peak amplitude, peak 
latency, and 50% area latency scores obtained from difference waves. For each component and each scoring method, the X- axis was evenly 
divided into seven bins to reflect the different ranges of values for each plot.
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great for the rare stimulus category as for the frequent 
stimulus category in these paradigms. The SME was also 
much greater for the error trials than for the correct trials 
in the ERN analysis, in which error trials were 10%– 25% 
as frequent as correct trials. The differences in SME be-
tween the conditions were statistically significant for the 
P3b, MMN, N400, and ERN analyses (for both mean and 
peak amplitude), but not for any of the other analyses (see 
Table 3).

Differences in the number of trials also partially ex-
plained differences in data quality between the different 
ERP components. For example, the data quality was con-
siderably better (lower) for LRP (200 trials per condition) 
and N2pc (160 trials per condition) components than for 
the N170 component (80 trials per condition). However, 
differences in the number of trials did not explain all of the 
differences in data quality. For example, the SME for faces 
in the N170 paradigm was nearly identical to the SME for 
deviant stimuli in the MMN paradigm (see Figure 4a), but 
there were approximately 2.5 times as many deviant tri-
als in the MMN paradigm as face trials in the N170 par-
adigm. As shown in the next section, differences among 
ERP components in trial- to- trial EEG variability were also 
responsible for this and some of the other differences in 
data quality.

3.2.2 | The role of trial- to- trial EEG 
variability in data quality for specific 
paradigms and conditions

The trial- to- trial EEG variability (quantified as the 
SD of the single- trial scores) is shown in Figure 4c for 
mean amplitude scores and Figure 4d for peak ampli-
tude scores. Just like the SME, the SD was significantly 
worse (larger) for peak amplitude than for mean ampli-
tude for each of the 14 combinations of condition and 
ERP component (see Table S3). In addition, the SD var-
ied widely across the seven different ERP components. 
The SD was lowest for the N170 and N2pc components, 
and substantially higher for the P3b, MMN, N400, ERN, 
and LRP.

Whereas the SME was worse (larger) for conditions 
with fewer trials than for conditions with more trials, 
the SD for a given component did not differ significantly 
across these conditions after correction for multiple 
comparisons (see Table  3). Even if significant differ-
ences had been seen, they could have been the result 
of the fact that the standard equation for estimating 
the SD is slightly biased by the number of observations. 
That is, the SD tends to be slightly underestimated 
when the number of observations is lower even when 
the appropriate degrees of freedom are used (Gurland 

& Tripathi,  1971). By contrast, the standard approach 
for estimating the variance across trials is unbiased, so 
the variance rather than the SD can be compared across 
conditions when the number of trials varies across con-
ditions (see Figure S4).

In the N400 experiment, the trial- to- trial variabil-
ity (SD) was greater for trials in which the target word 
was semantically related to the prime word than when 
the target and prime were semantically unrelated 
(which was statistically significant for mean ampli-
tude; see Table 3). A potential explanation is provided 
in Section 4.2.

3.2.3 | The role of the number of trials in 
data quality for individual participants

The previous sections considered how the number of tri-
als and the SD of the single- trial scores are related to dif-
ferences in SME values across the seven components and 
across the pairs of experimental conditions used to define 
these components. We now turn to the role of these fac-
tors in explaining differences in data quality among indi-
vidual participants.

The number of trials that were averaged together 
varied across participants as a result of artifact rejection 
and as a result of behavioral errors (in those analyses in 
which trials with errors were excluded: P3b, N170, N400, 
N2pc, LRP, and ERN). The number of trials varied greatly 
across participant for some components (e.g., P3b and 
ERN) but was relatively consistent across participants for 
other components (MMN, N170). These differences across 
components largely reflect the fact that some paradigms 
led to quite a bit of subject- to- subject variability in behav-
ioral accuracy. Spreadsheets with the number of included 
and excluded trials for each participant for each compo-
nent are provided in the online repository for this paper 
(10.18115/D5JW4R).

Figure  8 shows scatterplots of the relationship be-
tween SME and the square root of the number of trials 
for each participant in each paradigm, separately for 
mean amplitude and peak amplitude. In many cases, 
the SME declined linearly as the square root of the 
number of trials increased. After correction for mul-
tiple comparisons, however, this effect was statisti-
cally significant only for the ERN error trials, in which 
there was an especially broad spread across individu-
als in the number of trials (see statistics embedded in 
Figure 8). Thus, individual differences in the number 
of trials remaining after artifact rejection and exclusion 
of errors had a substantial impact on data quality only 
when the number of trials varied considerably across 
participants.

http://10.0.70.195/D5JW4R
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3.2.4 | The role of trial- to- trial EEG 
variability in data quality for individual 
participants

Differences between participants in EEG amplitude vari-
ability across trials played an important role in individual 
differences in SME. Figure 9 shows scatterplots of the re-
lationship between SME and the single- trial SD obtained 
from parent waves for the mean amplitude and peak am-
plitude scores for each of the seven ERP components. All 
the cases showed a strong linear relationship, with cor-
relations ranging from 0.79 to 0.99 for all cases except the 
error trials for the ERN component. In addition, with the 
exception of the ERN error trials, the correlations were 
substantially stronger for the SD (Figure 9) than for the 
square root of the number of trials (Figure 8). Thus, in the 
present data, individual differences in trial- to- trial EEG 

variability were the main driver of individual differences 
in data quality for the amplitude measures, although less 
so for the ERN (in which the number of trials varied con-
siderably across participants). Note that the number of tri-
als may be a more significant source of variation in SME 
in other paradigms or in other populations of research 
participants where the number of trials varies consider-
ably across participants.

Because of Equation  1, the SME for mean amplitude 
scores inevitably varies as a function of the SD. However, 
Equation 1 does not apply to peak amplitude scores, so the 
relationship between SD and SME for peak amplitude is an 
empirical question. Interestingly, we found that the SME 
for peak amplitude was strongly and approximately lin-
early related to the SD of the single- trial peak amplitudes 
in Figure  9. However, the correlations between SD and 
SME were slightly lower for peak amplitude than for mean 

F I G U R E  8  Scatterplots of the relationship between the standardized measurement error (SME, obtained from the parent waves) and 
the square root of the number of trials after rejection of trials with artifacts and behavioral errors. Scatterplots are shown for each of the 
seven components, separately for each of the two experimental conditions and for mean amplitude and peak amplitude scores. Each circle 
represents a single participant. The p values were corrected for multiple comparisons across the family of tests for each scoring method.
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amplitude. Also, given the lack of an analytic method for 
estimating the SME for peak amplitude scores, the strong 
and linear relationship between SD and SME for peak am-
plitude observed here may not hold for all experiments. 
Further, this relationship may not hold for other scoring 
methods. However, the fact that a strong linear relation-
ship was observed for all seven ERP components examined 
here suggests that the variability in peak amplitude across 
trials is likely to be strongly associated with the SME for 
peak amplitude across a broad range of paradigms.

3.3 | Are differences in data quality 
between participants consistent across 
paradigms and scoring procedures?

This section focuses on whether individual differ-
ences in data quality were consistent across the seven 

ERP components and the four scoring methods. That 
is, we asked whether the SME value for one partici-
pant in one paradigm (or one scoring method) pre-
dicts that individual's SME in the other paradigms (or 
other scoring methods). Such a finding would indicate 
that some participants simply have poorer data qual-
ity than others. Alternatively, it is possible that the 
factors that determine data quality for one paradigm 
or scoring method are quite different from the rele-
vant factors for other paradigms or scoring methods. 
For example, some scoring methods might be highly 
sensitive to high- frequency noise whereas other scor-
ing methods might not. To distinguish between these 
possibilities, we examined the correlation between 
SME values across different paradigms and different 
scoring methods. We focused primarily on the boot-
strapped SME values obtained from the difference 
waves, which could be validly assessed for all four 

F I G U R E  9  Scatterplots of the relationship between the standardized measurement error (SME, obtained from the parent waves) and 
the standard deviation (SD) of the single- trial scores for mean amplitude and peak amplitude scores. Scatterplots are shown for each of the 
seven components, separately for each of the two experimental conditions. Each circle represents a single participant. The p values were 
corrected for multiple comparisons across the family of tests for each scoring method.
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scoring methods. We also examined how trial- to- trial 
variability (i.e., SD) correlated across the seven ERP 
components. Note that the SD was obtained only for 
amplitude measures, and only from the parent waves, 
because single- trial values are not defined for differ-
ence waves and are often impossible to obtain validly 
for latency scores.

3.3.1 | Consistency of SME across 
components (difference waves)

We first examined correlations in SME values across the 
seven ERP components. Figure  10 provides scatterplots 
and Spearman rank- order correlation values showing 
the relationship between the SME values for each pair 

F I G U R E  1 0  Scatterplots of the relationship between standardized measurement error (SME) values for each pair of ERP components 
(for mean amplitude scores obtained from difference waves). Each circle represents a single participant. The p values were corrected for 
multiple comparisons across this entire family of tests. To allow comparisons among the different components, Subject 7 was excluded from 
all scatterplots because the number of trials was zero after artifact rejection for one of the conditions of the N2pc experiment. Corresponding 
plots for peak amplitude, peak latency, and 50% area latency are provided in Figures S5– S7.
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of components, using the SME for the mean amplitude 
score (measured from difference waves). Analogous in-
formation is provided for the other scoring methods in 
Figures S5– S7.

Significant positive correlations between SME values 
were observed for almost all pairs of components, indi-
cating that a participant with poor data quality for one 
component tends to have poor data quality for other com-
ponents as well. However, the correlations were far from 
perfect, and a few were not significant, suggesting that 
data quality is partially component- dependent. Similar re-
sults were obtained for the SME for peak amplitude scores 
(Figure  S5). For the peak latency and 50% area latency 
scores, the SME values showed much weaker correlations 
across components (Figures S6 and S7). For these scoring 
methods, data quality appears to depend on different fac-
tors for different components. Figures S8 and S9 show that 
similar results were obtained when we examined SD val-
ues rather than SME values.

To obtain an overall quantification of associa-
tions across components in SME values, as shown in 
Figure  11, we computed the intraclass correlation co-
efficient (ICC) for each scoring method. That is, we 
treated each component like a different rater of data 
quality for each participant and asked how consistently 

the different components “rated” the data quality. The 
SME values were first z- scored across participants for 
each component to put them into a consistent range of 
values. The ICC was 0.8 for the SME for mean amplitude 
score and 0.79 for the SME for peak amplitude score, in-
dicating a reasonably high level of concordance of SME 
values across components for the amplitude measures. 
However, the ICC was only 0.35 for the SME for peak 
latency and 0.28 for the SME for 50% area latency, indi-
cating a low level of concordance of SME values across 
components for the latency measures. These results con-
firm the observation that data quality was quite consis-
tent across components for the amplitude scores but was 
much less consistent across components for the latency 
scores.

3.3.2 | Consistency of SME across scoring 
methods (difference waves)

We next examined whether the SME was consistent 
across scoring methods for each component by asking 
whether the SME for a given scoring method was corre-
lated with the SME for the other scoring methods, sepa-
rately for each component. This was performed using 

F I G U R E  1 1  Variations in z- scored SME across participants for each component (obtained from difference waves).
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scores obtained from the difference waves so that both 
amplitude and latency could be validly scored for every 
component. Figure 12 provides the resulting scatterplots 
and Spearman rank- order correlation values.

The SME values between mean and peak amplitude 
scoring methods were strongly correlated with each 
other for all seven components (Figure 12, top row). The 
SME values for 50% area latency and peak latency scores 
were also correlated with each other for all seven com-
ponents (Figure 12, second row), but these correlations 
were not as strong as those between the SME values for 
the two amplitude measures. With a few exceptions, 
the SME for a given amplitude score and the SME for 
a given latency score were typically poorly correlated 
(Figure  12, rows 3– 6). These results suggest that the 
factors that determine an individual participant's data 
quality for an amplitude measure are often quite dif-
ferent from the factors that determine that individual's 

data quality for a latency measure. In other words, “data 
quality” is not a single factor that is the same across am-
plitude and latency measures.

4  |  DISCUSSION

In this study, we used the standardized measurement error 
(SME) to quantify the data quality across seven commonly 
studied ERP components, 40 individual participants, and 
four different scoring procedures (mean amplitude, peak 
amplitude, peak latency, and 50% area latency). We pro-
vided the SME values in multiple formats (Section 3.1) to 
allow other investigators to easily compare the SME val-
ues obtained here to their own SME values (which can be 
calculated using version 8 or later of ERPLAB Toolbox; 
Lopez- Calderon & Luck, 2014). All the scripts and results 
from the present study are available a folder named SME 

F I G U R E  1 2  Scatterplots of the relationship between standardized measurement error (SME) values corresponding to each pair of the 
four scoring methods (mean amplitude, peak amplitude, peak latency, and 50% area latency), separately for each component. The SME 
values were obtained from the difference waves. The p values were corrected for multiple comparisons across this entire family of tests.
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in the online repository for the ERP CORE (10.18115/
D5JW4R).

The present SME values can serve as a reference point 
for comparing data quality with different laboratories, 
different versions of the experimental paradigms, differ-
ent participant populations, different recording systems, 
and different processing and analysis procedures. For ex-
ample, a new laboratory could run one or more of these 
paradigms to determine whether they are obtaining com-
parable levels of data quality. Similarly, an established lab-
oratory could determine whether their version of a given 
paradigm leads to better data quality (in which case the 
field could consider moving toward their methods) or 
worse data quality (in which case the laboratory could 
consider modifying their methods).

It is important to note that SME values could vary from 
those reported here solely as a result of differences in the 
number of trials and not because of differences in single- 
trial noise. The single- trial SD values provided here can 
be used to compare noise levels independent of trials. 
Alternatively, the trials a given dataset can be subsampled 
before computing the SME to provide a comparison with 
another dataset containing fewer trials.

4.1 | Variations in data quality 
across paradigms, participants, and 
scoring procedures

The present study also found several interesting pat-
terns of variation across paradigms, participants, and 
scoring procedures. First, data quality was somewhat 
better for mean amplitude scores than for peak ampli-
tude scores, and much better for 50% area latency scores 
than for peak latency scores. These findings are consist-
ent with previous studies using other approaches to as-
sessing data quality. For example, Clayson et al. (2013) 
created a simulated noise- free ERP waveform and added 
simulated noise to examine the noise sensitivity of dif-
ferent scoring methods. Performance was quantified as 
the RMS error of the measurements across simulations 
relative to the noise- free data. Mean amplitude was less 
sensitive to noise than peak amplitude, and 50% area 
latency was less sensitive to noise than peak latency. 
Luck (2005) also found reduced variability for 50% area 
latency scores relative to peak latency scores using sim-
ulated data. The present results demonstrate that these 
patterns are also found in real data and across a broad 
range of experimental paradigms. Thus, researchers 
who currently use peak amplitude and/or peak latency 
should consider using mean amplitude and 50% area la-
tency instead. Note, however, that 50% area latency is 

valid only when a component has been isolated via a dif-
ference wave or when the component is very large (e.g., 
P3b and N400; see Luck, 2014).

Second, data quality was much better for some com-
ponents/paradigms than for others. For example, the 
SME for mean amplitude was approximately four times 
greater for the P3b component than for the N2pc com-
ponent, and the SME for peak latency was more than 10 
times greater for the P3b component than for the N170 
component (see Figures 4 and 5 and Table S1). However, 
the differences in amplitude between conditions tended 
to be larger in the paradigms with poorer data quality, 
and these factors may balance each other. Indeed, the 
effect size (Cohen's d) for the difference between con-
ditions was quite large for all seven components (see 
Table 3 in Kappenman et al., 2021).

Third, the range of SME values across participants was 
quite large. Specifically, the SME was typically 5– 10 times 
larger for the worst participant than for the best partic-
ipant in a given paradigm (see Figures 6 and 7, and also 
the spreadsheets available at 10.18115/D5JW4R). This is 
a surprisingly wide range given that the participants were 
all neurotypical young adults attending a highly selective 
university and therefore relatively homogeneous in fac-
tors such as age, cognitive ability, self- control, and ability 
to understand and follow instructions. An even broader 
range of SME values would be expected for more diverse 
populations.

Effect sizes and statistical power are related to squared 
SME values (see Luck et al., 2021, especially Equations 3 
and 5), which means that the participants with high SME 
values have an exponential impact on the likelihood of 
obtaining statistical significance. It would therefore be 
worthwhile for methodology researchers to focus on ap-
proaches to improving data quality for the most extreme 
cases.

4.2 | Causes of variations in data quality

For mean amplitude scores, Equation  1 entails that the 
SME increases linearly as a function of the SD of the 
single- trial amplitudes and decreases linearly as a func-
tion of the square root of the number of trials, with no 
other contributing factors. In the present study, some 
of the differences in data quality across paradigms and 
across conditions within a paradigm were mainly a re-
sult of differences in the square root of the number of 
trials. For example, the SME values for peak amplitude 
and mean amplitude scores were approximately twice as 
great for the rare conditions as for the frequent conditions 
in the P3b and MMN paradigms, reflecting the fact that 

http://10.0.70.195/D5JW4R
http://10.0.70.195/D5JW4R
http://10.0.70.195/D5JW4R
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there were approximately four times as many trials in the 
frequent conditions as in the rare conditions. Similarly, 
SME values tended to be lower for paradigms with more 
trials (e.g., the LRP paradigm, with 200 trials per condi-
tion) than for paradigms with fewer trials (e.g., the N170 
component, with 80 trials per condition).

However, the number of trials did not fully explain 
differences in SME across conditions and paradigms. 
For example, there were approximately 2.5 times as 
many deviant trials in the MMN paradigm as face tri-
als in the N170 paradigm, but the SME values for mean 
amplitude were nearly identical (see Figure 4a). In these 
cases, the differences were necessarily due to differences 
in trial- to- trial amplitude variability, because that is the 
only other factor that impacts the SME for mean ampli-
tude in Equation 1.

Interestingly, the SME for mean amplitude in the N400 
paradigm was greater for semantically related trials than 
for semantically unrelated trials, even though the num-
ber of trials was the same, because the SD of the single- 
trial amplitudes was greater for the related trials than for 
the unrelated trials. This was unexpected, because the 
variability of a signal ordinarily increases with the mag-
nitude of the signal (Brandmaier et al.,  2018), and the 
N400 was much larger for the unrelated trials. This dif-
ference may reflect the fact that the association strength 
between the preceding prime word and the target word 
was much more variable for the related target words (asso-
ciation strength = 0.73– 0.94) than for the unrelated target 
words (association strength = 0.00– 0.01) (see Kappenman 
et al., 2021 for details). This may have led to greater vari-
ability N400 amplitude variability for the unrelated trials, 
creating a larger SD and SME.

One might also expect that trial- to- trial variability 
would be greater for the rare category than for the fre-
quent category in an oddball paradigm, but this was not 
observed for either the P3b or the MMN (but see Figure S4 
for an important caveat about comparing SD values for 
conditions that differ in the number of trials). These find-
ings indicate the value of actually quantifying the trial- to- 
trial variability.

Note that trial- to- trial variability in cognitive pro-
cessing can be theoretically important (Ratcliff & 
McKoon, 2008; Tamm et al., 2012). The SME would not 
be a good way to quantify neural variability, because it 
depends on the number of trials as well as the trial- to- 
trial variability. The SD is better because it is less de-
pendent on the number of trials. However, the SD is 
influenced by nonneural sources of variability as well as 
neural sources. For example, differences in movement 
artifacts and skin potentials between groups or condi-
tions could cause differences in SD between groups or 
conditions. The SD would be a useful way of comparing 

neural variability only if it was clear that nonneu-
ral sources of variability were unlikely to differ across 
groups or conditions. In addition, the true SD is under-
estimated by the sample SD when the number of trials 
becomes small (but there is a correction for this; see 
Gurland & Tripathi, 1971).

We also examined how the number of trials and the 
trial- to- trial EEG variability were related to the differ-
ences in SME across participants. The number of error 
trials varied considerably across participants for the ERN 
paradigm, and the SME for error trials was strongly and 
linearly related to the square root of the number of trials 
(Figure  8). Weaker and nonsignificant effects were seen 
for other components, in which the number of trials did 
not vary as much across participants. For all seven ERP 
components, however, differences among participants in 
SME were strongly predicted by individual differences in 
trial- to- trial EEG variability (Figure 9).

Unfortunately, these analyses were limited to ampli-
tude measures obtained from the parent waves, because 
it was not straightforward to assess trial- to- trial variabil-
ity for difference waves, and it was impossible to obtain 
valid latency measures from the parent waves for several 
of the components. In addition, Equation 1 is valid only 
for mean amplitude scores, so the factors that impact 
data quality for other scoring procedures cannot be de-
termined analytically. The present analyses suggest that 
the effects of trial- to- trial variability and the number of 
trials are similar for peak amplitude and mean amplitude 
(compare the left and right halves of Figures  8 and 9). 
However, other factors may also play a role, especially for 
latency scores. For example, Luck (2014) speculated that 
peak latency will be difficult to measure precisely from a 
broad, low- amplitude waveform. Additional research will 
be needed to determine the factors that contribute to the 
SME for scoring methods such as peak latency and 50% 
area latency.

The question of why the SME varies across paradigms 
and participants can also be asked in terms of the types of 
signals and noise that are present in the EEG. For exam-
ple, what is the relative impact of alpha- band EEG oscil-
lations, low- frequency skin potentials, or line noise for a 
given amplitude or latency score? This will be an import-
ant topic for future research.

4.3 | Consistency of data quality across 
paradigms and scoring procedures for 
individual participants

When EEG data are viewed in real time during a recording 
session, it sometimes seems obvious that the data from the 
current session are “clean” or “noisy”. This assumes that 
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the data quality for a given participant will be “good” or 
“bad” on the basis of the raw EEG alone, independent of 
how the data are scored. As discussed in Section 1.2, how-
ever, the concept of data quality in ERP research must be 
defined with respect to the specific scores that will be ob-
tained from the averaged ERP waveforms. Consequently, 
it is quite possible that a given participant could have 
“good” data quality for one component or scoring method 
but have “bad” data quality for another component or 
scoring method. However, it is also theoretically possi-
ble that individual differences in the raw EEG signal are 
the main driver of individual differences in data quality, 
with relatively little effect of the experimental paradigm 
or scoring method.

We addressed this issue by determining how the SME 
values were correlated across components. For the ampli-
tude scores, we found significant correlations between the 
SME values for many pairs of components (see Figure 10 
and Figure S5), and the intraclass correlation coefficients 
were fairly high (0.80 for mean amplitude and 0.79 for 
peak amplitude). However, the correlations in SME be-
tween pairs of components were quite weak for the two 
latency measures, with low intraclass correlation coeffi-
cients (0.35 for peak latency and 0.28 for 50% area latency).

We also asked whether the data quality for a given scor-
ing procedure was correlated with the data quality for the 
other scoring procedures (see Figure 12). The SME values 
for the two amplitude scores were nearly perfectly cor-
related with each other for all seven components, but the 
SME values for the two latency scores were only modestly 
correlated with each other for most components. In addi-
tion, the correlations were quite low between the ampli-
tude and latency SME values for most components.

Together, this pattern of correlations suggests that an 
individual's ERP data quality is not purely a function of 
how “noisy” the EEG waveforms are. Instead, data quality 
is strongly impacted by whether the data are scored for 
amplitude or for latency and by which latency scoring 
procedure is used. Moreover, when latencies were scored, 
the data quality for one component was not a good predic-
tor of data quality for most other components. However, 
when amplitudes were scored, data quality was highly 
consistent across components (although this may not be 
true when the different components are recorded in dif-
ferent sessions). These results reinforce the idea that ERP 
data quality depend on both the properties of a partici-
pant's EEG signal and the scoring method.

4.4 | Concluding comments

Although data quality is obviously important in ERP 
research, we know of no prior efforts to systematically 

quantify ERP data quality across a large number of par-
adigms, participants, and scoring procedures. The pre-
sent results indicate that data quality varies quite widely 
across these variables. We hope that this study inspires 
other researchers to quantify their data quality, which 
is an important first step toward increasing the quality 
of the data and therefore the statistical power of their 
experiments. Toward that end, we have made it trivial 
to compute the SME for mean amplitude in ERPLAB 
Toolbox (version 8 and later), and we have provided 
example scripts for using bootstrapping to compute the 
SME for peak amplitude, peak latency, and 50% area 
 latency (10.18115/D5JW4R).

SME values can be very helpful in performing power 
analyses. In particular, because the SME varies linearly 
with the square root of the number of trials, it is possible 
to predict how the SME will change if the number of 
trials is increased or decreased for a given experiment. 
Our original SME paper (Luck et al.,  2021) provides a 
detailed description of how SME scores can be used to 
estimate effect sizes, which can then be used in power 
analyses. In addition, it describes how to convert SME 
values into measurement error variance, which can in 
turn be plugged into a power calculator that predicts 
how power will vary according to any combination of 
number of participants and number of trials (Baker 
et al., 2020).

It would be very helpful for researchers to provide SME 
benchmarks for other paradigms, participant populations, 
and scoring procedures. For example, a recent study by 
Isbell and Grammer  (2022) examined the SME for the 
ERN in children between the ages of 5 and 7 using a child- 
friendly version of the Go/NoGo task. They found that the 
SME values were substantially larger than those found 
for the ERN in the present study, which is not surprising 
given the challenges involved in recording the EEG from 
children.

Another useful direction for future research would 
be to assess the impact of different data processing 
pipelines. For example, when a strict artifact rejection 
threshold is imposed, this may reduce trial- to- trial vari-
ability and thereby improve the data quality, but it will 
also reduce the number of trials which may degrade the 
data quality. The SME can provide an objective criterion 
for determining which parameters or algorithms are 
optimal (see Luck, 2022). However, it will be important 
for such research to determine whether a given set of 
parameters or algorithms leads to a bias in the ampli-
tude or latency scores, which would not be evident in 
the SME values but could lead to incorrect conclusions. 
Ideally, researchers should strive to obtain scores that 
are both accurate (have minimal bias) and precise (have 
low SME values).

http://10.0.70.195/D5JW4R
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